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ART Neural Networks for Remote Sensing:
Vegetation Classification from Landsat
TM and Terrain Data

Gail A. Carpenter, Marin N. Gjaja, Sucharita Gopal, and Curtis E. Woodcock

Abstract—A new methodology for automatic mapping from proven insufficient for differentiating species-level vegetation
Landsat thematic mapper (TM) and terrain data, based on the classes. Many factors contribute to this problem, including the
fuzzy ARTMAP neural network, is developed. System capabilities oo cts of local topography, background reflectance from soils
are tested on a challenging remote sensing classification problem, d . h,' h within-cl . d h
using spectral and terrain features for vegetation classification in 0" Un erstory Veget"f‘t'on' Igh wit In.-c ass varllance ue to t_ €
the Cleveland National Forest. After training at the pixel level, Structure and patchiness of vegetation canopies, and the lim-
system performance is tested at the stand level, using sites notitations of classification methodologies. To help differentiate
seen during training. Results are compared to those of maximum yegetation types at the species level, ancillary data have often

likelihood classifiers, as well as back propagation neural networks P : :
and K Nearest Neighbor algorithms. ARTMAP dynamics are been used, and_lt IS now common to use .tOpOgra.ph.IC variables
fast, stable, and scalable, overcoming common limitations of back SUCh as elevation, slope, and aspect in predictive models

propagation. Best results are obtained using a hybrid system [15]-[17]. Mapping systems that use spectral and ancillary
based on a convex combination of fuzzy ARTMAP and maxi- data typically resemble rule-based expert systems [18]-[20].
mum likelihood predictions. A prototype remote sensing example Neural networks can improve classification accuracy by

introduces each aspect of data processing and fuzzy ARTMAP o . e ;
classification. The example shows how the network automatically 10-30% compared to conventional classification techniques.

constructs a minimal number of recognition categories to meet Back propagation [21], [22], a feedforward multilayer percep-
accuracy criteria. A voting strategy improves prediction and tron [23], has been used in a large majority of these studies.
assigns confidence estimates by training the system several timesOther neural network applications employ the binary diamond

on different orderings of an input set. network [24], fuzzy ARTMAP [10], and ART [4]. Research
on classification methods for remote sensing, including neural
. INTRODUCTION. NEURAL networks, also continues [3], [25]-[28]. In general, these
NETWORKS AND REMOTE SENSING studies show that: a) neural network classifiers, which make

APPING vegetation from satellite remote sensing daf¥ @ priori assumptions about data distributions, are able to

has been an active area of research and developm@ﬁfn nonlinear and discontinuous data samples; b) neural net-
over the past 20 years [1], [2], and neural networks have orks can readily accommodate ancillary data such as textural
cently been successfully applied to this problem. Data sourdgfprmation, slope, aspect, and elevation; c) neural networks
that have been analyzed with neural networks include th&e typically more accurate than conventional classifiers; and
Landsat Multispectral Scanner (MSS) [3], Landsat Themati neural network architectures are quite flexible and can be
Mapper (TM) [4]-[6], SPOT (Systeme Pour I'Observatiodapted to improve performance on particular problems.
de la Terre) [7], synthetic aperture radar (SAR) [8], [9], The fuzzy ARTMAP neural network is here presented as the
Advanced Very High Resolution Radiometer (AVHRR) [10]pbasis of a systematic methodology for automatic classification
and multidirectional Advanced Solid-State Array Spectror®f vegetation at the species level from multispectral and
diometer (ASAS) [11]. Classification studies that seek tncillary data. Section Il introduces the ART and ARTMAP
identify landcover classes range from broad life-form cateural networks and Sections IlI-V provide self-contained
egories [12] to narrow floristic classes [13]. In supervisedescriptions of fuzzy ART and fuzzy ARTMAP, including
learning studies, input presented to a neural network duringcomplete implementation algorithm. A prototype remote
training typically consists of spectral data [14], and outpensing example (Section VI) illustrates fuzzy ARTMAP dy-
consists of ground truth information about a vegetation clasgamics (Section VII). A series of tests then compare fuzzy
although multispectral image information alone has sometim@RTMAP properties and predictions with those of a maximum
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problems. Because fuzzy ARTMAP and maximum likelihood
make predictive errors at different locations, a hybrid system
can be constructed to give optimal performance. The study
defines a general purpose methodology for automatic map
construction from remote sensing and ancillary data.

II. ART AND ARTMAP NEURAL NETWORKS

Adaptive resonance theory (ART), introduced in the 1970s
as a theory of human cognitive information processing [29],
has led to an evolving series of real-time neural network
models for unsupervised and supervised category learning
and pattern recognition. These models form stable recognition
categories in response to arbitrary input sequences with either
fast or slow learning regimes. The first ART model, ART
1 [30], was an unsupervised learning system to categorize
binary input patterns. ART 1 and subsequent models added
new concepts to the theory and have been used for a wide
variety of scientific and technological applications [31]. ART
2 [32] and fuzzy ART [33] extend the binary ART 1 domain
to categorize both analog and binary input patterns.

A class of supervised network architectures, called
ARTMAP systems, self-organize arbitrary mappings from
input vectors, representing features such as spectral values and
terrain variables, to output vectors, representing predictions
such as vegetation classes or mixtures. ARTMAP’s internal

(© (d)
Fig. 1. ART search for a; code: (a) The input vectok generates thé’;

Contml_ mechamsms Cre.at(? . stable recognition . Categqué vity vectorx as it activates the orienting subsystém Activity x both
of optimal size by maximizing code compression whilehibits 2 and generates afy, — F signal. A bottom-up adaptive filter
minimizing predictive error in an on-line setting. Binary ART ﬂfaﬂSfOFm;X i(f;)t;)';hte F2d input \éeCft‘?fT];_l‘tNhifh aCftivafeS_ fthet hST'V' tpa“em
. . ) acrossky. op-down adaptive filter transforms into the category
CompUta_tlonS are the foundano_n of the first ARTMAP netWorkpresentation vectdv. WhereV mismatchesA, F registers a diminished
[34], which therefore learns binary maps. When fuzzy ARSTM activity patternx*. The resulting reduction of total STM reduces the
replaces ART 1 in an ARTMAP system, the resulting fuzzgltal inhibitory signal fromF; to Q. (c) If the ART matching criterion fails,
. . . ) releases a nonspecific signal that resets the STM pagteat F5. (d)
ARTMAP arCh'teCture [35] rapidly learns stable majppmgéince reset inhibity, it also eliminates the top-down signd, sox can
between analog or binary input and output vectors. This artiale reinstated af . However, enduring traces of the prior reset allawto
demonstrates fuzzy ARTMAP performance on a dif'ficulﬁtlCtivate a diffﬁrem ST™ Pittem; atry. mhe top'do";” Sri]g”a' dU? tg*h
. ; - e . so mismatcheA at Fy, then the search for afy code that satisfies the
remote sensing prqblem (Section VI!I). A simplified version oi]atchmg criterion continues [30].
this problem (Sections VI and VII) introduces and illustrates

fuzzy ARTMAP networks and also summarizes the daté\”‘daptive weight, transform into a net input vectoT to level

processing methods developed for remote sensing applicatiop;.The internal competitive dynamics & contrast-enhance

vector T, generating a compressed activity vecgoracross

A. ART F5. In ART 1 and fuzzy ART, strong competition selects the

The central feature of all ART systems is a pattern matchirdg node that receives the maxim&] — F» input component
process that compares the current input with a selected learfigd Only one componerty;) of y remains positive after this
category representation, or active hypothesis. This matchicigoice takes place. Activation of such a winner-take-all node
process leads either to a resonant state that focuses attergilacts category for the input patternA.
and triggers category learning or to a self-regulating parallel Activation of anF; node may be interpreted as “making a
memory search that is guaranteed to lead to a resonant sthy@othesis” about an inpuA. After sending thel activity
unless the network’s memory capacity is exceeded. If thectory through top-down adaptive filter pathways, a filtered
search ends with selection of an established category, thenyketor V becomes thé, — F; input [Fig. 1(b)]. The ART
category’s learned representation may be refined to incorporatgwork matches the “expectation” patted of the active
new information from the current input. If the search endsategory against the current input pattern, or exem@af, his
by selecting a previously untrained node, the ART networkatching process typically changes the activity patternx,
establishes a new category. suppressing activation of all features 4 that are not con-

Fig. 1 illustrates the ART search cycle. During ART searclirmed by V. The resultant patters* represents the features
an input vectorA registers itself as a pattern of short- to which the network “pays attention.” If the expectati¥his
term memory (STM) activity across level; [Fig. 1(a)]. close enough to the inpu, then a state of resonance occurs,
Converging and divergindg; — F5 adaptive filter pathways, with the matched patterxr* defining an attentional focus. The
each weighted by a long term memory (LTM) trace, oresonant state persists long enough for weight adaptation to
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occur; hence, the teradaptive resonanceneory. The fact that learning destabilizes the memories of feedforward, error-based
ART networks encode only attended featuségather than all models like back propagation. When the difference between
input featuresA is directly responsible for ART code stability.actual output and target output defines “error,” present inputs
This characteristic differentiates ART from feedforward neurarive out past learning, since fast learning zeroes the error
networks, which typically encode the current vecforrather on each input trial. This feature of back propagation restricts
than a matched pattern, and hence require slow learningit®odomain to off-line applications with a slow learning rate.
avoid catastrophic forgetting of past memories. In addition, lacking the key feature of competition, a back
A dimensionless parameter calledgilance defines the propagation system tends to average rare events with similar
criterion of an acceptable match. Vigilance specifies whiequent events that have different consequences.
fraction of the bottom-up inpuA must remain in the matched Some applications benefit from fast-commit slow-recode
I patternx* in order for resonance to occur. In unsuperviseaption that combines fast initial learning with a slower rate
ART systems, vigilance is a fixed parameter, but in ARTMARyf forgetting. Fast commitment retains the advantage of fast
vigilance becomes an internally controlled variable. Becauksarning, namely, the ability to respond to important distinctive
vigilance then varies across learning trials, a single ARTMAIRputs that occur only rarely. Slow recoding then prevents
system can encode widely differing degrees of generalizatideatures in a category’s learned representation from being
or code compression. Low vigilance allows broad generaroneously altered in response to noisy or partial inputs.
ization, coarse categories, and abstract representations. Higeomplement coding a preprocessing step that normalizes
vigilance leads to narrow generalization, fine categories, aimgut patterns and solves a potential fuzzy ART category
specific representations. At the very high vigilance limit, catgroliferation problem [33], [37]. In neurobiological terms,
gory learning reduces to exemplar learning. Varying vigilansgmplement coding uses both on-cells and off-cells to repre-
levels allow a single ART system to recognize both abstragent an input pattern, preserving individual feature amplitudes
categories, such as faces and dogs, and individual faces wfdle normalizing the total on-cell/off-cell activity. Function-
dogs. ally, the on-cell portion of a weight vector encodes features
ART memory search, or hypothesis testing, begins when ti@t are consistently present in category exemplars, while
top-down expectatior’’V determines that the bottom-up inputhe off-cell portion encodes features that are consistently
A is too novel, or unexpected, with respect to the chosatsent. Small weights in both on-cell and off-cell portions
category to satisfy the vigilance criterion. Search leads @b a category representation encode as “uninformative” those
selection of a better recognition code to represent infut features that are sometimes present and sometimes absent.
at level F,. An orienting subsystenf) controls the search Complement coding allows a geometric interpretation of fuzzy
process. The orienting subsystem interacts with the attentioR&®T recognition categories as box-shaped regions of input
subsystem [Fig. 1(b) and (c)] to enable the network to leafpace. Tests of a prototype remote sensing example illustrate
about novel inputs without risking unselective forgetting ofuzzy ART geometry with inputs that provide two TM spectral
its previous knowledge. ART 3 [36] implements paralldpand values at each pixel (Section VII). Thus the inputs are
distributed search as a medium-term memory (MTM) proced#/0o-dimensional and category boxes are rectangles.
as needed for distributed recognition codes.
ART search prevents associations from forming between
y and x* if x* is too different from A to satisfy the B. ARTMAP
vigilance criterion. The search process resetbefore such  Each ARTMAP system includes a pair of ART modules
an association can form. If the vigilance criterion is met, thgiART, and ART},) that create stable recognition categories in
the active category’s representation may be refined in lighisponse to arbitrary sequences of input patterns (Fig. 2). Dur-
of new information carried byA. If the search ends upon aning supervised learningART, receives a stream of patterns
uncommittedF’, node, thenA begins a new category. An ART {a(®} and ART, receives a stream of patterfis(> }, where
choice parametery controls how deeply the search proceeds(" is the correct prediction givea(™ . An associative learn-
before selecting an uncommitted node. In a parameter rarigg network and an internal controller link these modules to
called theconservative limitwhere« is very small, an input make the ARTMAP system operate in real time. The controller
first selects a category whose weight vector is a subset of treates the minimal number &RT, recognition categories,
input, if such a category exists. Given such a choice, no weight“hidden units,” needed to meet accuracy criteria. A minimax
change occurs during learning; hence the name conservataarning rule enables ARTMAP to learn quickly, efficiently,
limit, since learned weights are conserved wherever possité@&d accurately as it conjointly minimizes predictive error and
As learning self-stabilizes, all inputs coded by a categorgaximizes code compression. This scheme automatically links
access it directly, search is automatically disengaged, and firedictive success to category size on a trial-by-trial basis
performance rate reaches 100% on the training set. using only local operations. It works by increasing thBT,,
Many ART applications use fast learning, whereby adaptiwégilance parametep = p, by the minimal amount needed to
weights fully converge to equilibrium values in response toorrect a predictive error aiRT,,.
each input pattern. Fast learning enables a system to adapk baseline vigilanceparameterp = p, calibrates a min-
quickly to inputs that occur only rarely but that may requirenum confidence level at whicthRT, will accept a cho-
immediate accurate performance. Remembering many deta#sm category. Lower values gf allow larger categories
of an exciting movie is a typical example of fast learning. Fagh form, maximizing code compression. Initially, = p.
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B. Weight Vector

ARTMAP 'V’AF’F'ELDM Associated with eachf, category nodej(j = 1...N)
i < is a vectorw; = (wy;,...,wan,;) Of adaptive weights, or
) . x® long-term memory (LTM) traces. Initially
ART ART, wi(0) = = wi;(0) =+ =wapr;(0) =1. (1)
"""""""""""""""""""""""""""""""" | °  Then each category isncommitted After a category codes

its first input, it becomesommitted Each componenty;;
can decrease toward 0 but never increase during learning, so
weights always converge. The fuzzy ART weight vectoy

PREDICTIVE
ERROR

- : L , denotes both the bottom-up and the top-down weight vectors
1‘1(1 Xu '_>RESEONANCE ’ ™ Of ART 1

; § - _ C. Parameters

CFY A L MATCH PR B : . .

0 ™ :TERACK‘”G 0 R A choice parameterx > 0, a learning rate parameter

' i i( +o4 i 3 € [0,1], and a vigilance parametgr € [0, 1] determine

; bﬁb . fuzzy ART dynamics.
n D. Category Choice

For each inputa and £, node j, the choice functiont; is

Fig. 2. ARTMAP architecture. ThART, complement coding preprocessordeIned by

transforms thel/,-vectora into the2M,-vectorA = (a, a®) at theART,

field Fy'. A is the input vector to the\RT', field £*. Similarly, the input to T,'(A)
Ff is the 2My,-vectorB = (b, b¢). When ART), disconfirms a prediction J

of ART,, map field inhibition induces the match tracking process. Match . . . .
tracking raises th& RT, vigilancep., to just above the"*-to-F@¢match ratio  Where the fuzzy intersection [38] is defined by

|x2|/|A|. This triggers anART, search which leads either to abRT,

category that correctly predics or to a previously uncommittedRT,, (PA Q)i = min(p;, ¢;) 3)
category node [34].

_ A AW
o+ |wyl

(@)

and where the city-block norrr - - | is defined by

puring training, a predictive failure aAART, increasesp Ip| = Z|pi|' (4)
just enough to trigger alhRT, search, through a feedback i

control mechanism calleshatch tracking34]. Match tracking
sacrifices the minimum amount of compression necessary
correct the predictive error. Hypothesis testing selects a n
ART category, which focuses attention on a clusterat?
input features that is better able to predict the outplit. Ty=max{T;:j=1,..., N} (5)
With fast learning, match tracking allows a single ARTMAP ) . .

system to learn a different prediction for a rare event than fjfmore than onel’; is maximal, the category with the smallest

a cloud of similar frequent events in which it is embedded./ iNdex is chosen. In particular, nodes become committed in
orderj = 1,2,3.... When the/th category is chosen,; = 1;

andy; =0 for j # J. The F, — Fj signal vectorV is then
equal to the/th category weight vectow ; and theF} activity
This section summarizes key features of fuzzy ART dynamectorx is reduced fromA to the matched patterA A w .

The system makes eategory choicavhen at most oné;,
ndde can become active at a given time. The indedenotes
chosen category, where

Il. Fuzzy ART DYNAMICS

ics, with a complement coding preprocessor. That is, in a choice system, tg vectorx obeys the equation
. - _JA if F» is inactive
A. Field Activity Vectors x= {A Awy if the Jth F, node is chosen. (6)

A fuzzy ART system includes a field, of nodes that

represent a current input vector; a field that represents E. Resonance or Reset
the active code, or category; and a field that receives
both bottom-up input fromfy and top-down input fron¥.
Vector A denotest activity, with each componemd; in the
interval [0, 1]. With complement codingA = (a,a®). That A Awy|
is, 4 =a;fori=1...M;andA; = af_,;, = (1 — ai_m) |A]
fori = M +1...2M. Vectorx = (x1,...,z2p) denotes
I activity andy = (y1,...,yn) denotesF, activity. The
number of input componentd/) and the number of category
nodes(N) can be arbitrarily large. |x| = [AAwy| > plA| (8)

Resonanc@ccurs if thematch function A A wy||A|~! of
the chosen category meets the vigilance criterion

>p (7)

that is, by (6), when the/th category becomes active, reso-
nance occurs if
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Learning then ensues, as defined belbismatch resebccurs
if ?
|A Awy| 1

<p ) :

Al Vi

that is, if R

x| = |AAwy| <plA] (10)

Then the value of the choice functidfy is set to 0 for the
duration of the input presentation to prevent the persistent a
selection of the same category during search. A new index 0 1

J represents the active category, selected by (5). The search

process continues until the chosénsatisfies the matching @
criterion (7). By (1), search ends jfis an uncommitted node.

Y=

F. Learning 1

Once search ends, the weight vectoy learns according
to the equation R_]

wir = (1 - w4 g(AA W), (1)

Fast learningcorresponds to setting = 1, when the weight | & ________
vectorw; converges to the matchdd vectorx = A Awjy an llj 4
on each input presentation. 1

G. Normalization by Complement Coding (b)

Normalization of fuzzy ART inputs prevents category pro-
liferation as many weights erode to 0 in some input regimes.
An Fy, — F, inputis normalized iy~ A; = |A| = constant

for all inputsA.. Complement coding automatically normalizes
inputs because

M M
Al=l@a) = a+> (1—a) =M. (12)
=1 =1

IV. Fuzzy ART GEOMETRY

A geometric interpretation of fuzzy ART represents each
category as a box id/-dimensional space, whet® is the
number of components of input. In the prototype remote (c)
sensing example (Section VI}, represents two TM spectral Fig. 3. Fuzzy ART category boxes, wiftd = 2: (a) In complement coding

band values for a given pixel, scaled to the inter{(/]a[l], so form, each weight vectow; has a geometric interpretation as a rectargje
M = 2. With complement coding. then with corners(u;, v;). (b) During fast learningR ; expands taR ; ¢ a, the
- - p 9, ’ smallest rectangle that includé&s; anda, provided thatR ; $a| < 2(1—p).
(c) With fuzzy ART fast learning and complement coding, itk category
A=(aa%) = (al, az,ag, ag) (13) rectangleR; includes all those vectorsin the unit square that have activated
categoryj without reset. The weight vectar; equals(Aja, (Vja)®).

and each category has a geometric representation as a
rectanglef?;. Following the form of (13), a complement-codedyhich is equal to the height plus the width &;. In the

weight vectorw; can be written as prototype example, each side &; represents a range of
. values of the corresponding TM band.
w; = (u;,v]) (14) In a fast-learn fuzzy ART system, with3 =

(new) __ _ ¢ . :
whereu; andv; are two-dimensional (2-D) vectors. Vectorl(ll)’WJ = A = (a,a%) whenJis an uncommitted node.

(new) — — cye —
u; defines one corner of a rectangl andv; defines the The corners ofit;™"" are thenu; = a andv; = (a%)* = a.
opposite corner [Fig. 3(a)]. The size &; is Hence RS“e‘V) is just the point boxa. Learning increases

the size of Ry, which grows as weights shrink. Vigilange
|R;| = |v; —uy] (15) determines the maximum size &, with |R;| < M(1 — p),
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as shown below. With fast learning,; expands ta? ; ¢ a, the
minimum box containingR; and a [Fig. 3(b)]. The corners

of Ry®a areanuy andaV vy, where the fuzzy intersection

A is defined by (3); and the fuzzy unionis defined by

(pV Q)i = max(pi, qi) (16)
[38]. Hence, by (15), the size dk; & a is
|[Ry@al=|(aVvvy)—(aruy)l 17)

However, beforeR; can expand to includa, category./

is reset if |[R; @ a| would be too large, according to the
vigilance criterion. With fast learning®; is the smallest box

that encloses all vectoesthat have chosen categaofyithout
reset.

If a has dimensiod{, the box£; includes the two opposing
verticesAja and Vv;a, where theith component of each of

these vectors is

(A;a); = min{a; : a has been coded by categgiy (18)
and
(v;a); = max{a; : a has been coded by categoiy (19)

[Fig. 3(c)]. The size ofR; is

[Bj| = Vja—Asal (20)
and the weight vectow; is
w; = (/\ja, (\/ja)c) (22)

as in (14) and (15). Thus

M M
wil =Y (Aja)i+ > [1—(Va)] = M —|V;a—Ajal
=1

=1

(22)
so the size of the boxXi; is

|Rj| = M — |w;l. (23)

By (8), (11), and (12), the vigilance matching criterion implie

a lower bound on the size of the weight vectoy

|w;| > pM. (24)
By (23) and (24)

IRj| < (1-p)M. (25)

Inequality (25) shows that high vigilandg = 1) leads to
small boxesk?; while low vigilance(p = 0) permits largeR,.

V. A Fuzzy ARTMAP ALGORITHM
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Fig. 4. A simplified ARTMAP network computes classification probabilities,
with |b| = 1 at an output fieldF}.

predictions such as the likelihood of an adverse outcome
following an operation. The original binary ARTMAP [34]
incorporates two ART 1 modulesART, and ART,;, that

are linked by amap field F2* (Fig. 2). At the map field

the network forms associations between categories via outstar
learning and triggers search, via the ARTMAP match tracking
rule, when a training set input fails to make a correct predic-
tion. Match tracking increases theRT, vigilance parameter

p = pe In response to a predictive error ART,. Fuzzy
ARTMAP [35] substitutes fuzzy ART for ART 1.

Many applications of supervised learning systems such
as ARTMAP are classification problems, where the trained
system tries to predict a correct category given a test set
input vector. A prediction might be a single category or
distributed as a set of scores or probabilities. The fuzzy
ARTMAP algorithm below outlines a procedure for applying
fuzzy ART learning and prediction to this problem, which
does not require the fulART, architecture (Fig. 4). In the
algorithm an inputa = (a; ...a;...ay) learns to predict an
outcomeb = (by ... b ...br). Aclassification problem would
set one componerity = 1 during training, placing an input
2 in class K.

Note that the fuzzy ARTMAP algorithm allows a small
match-tracking parametét) to be either positive or negative.
Compared to the original match tracking algorithm, which
allowed only positivee values (MT+), a negative value
of ¢ (MT-) can facilitate prediction with sparse or incon-
sistent data and improve memory compression without loss
of accuracy, and the resulting algorithm is actually a better
approximation of the full ARTMAP differential equations [39].

A. Fuzzy ARTMAP Training
During training, input pairga®), b)), (al® b)), ...,

ARTMAP networks for supervised learning self-organizéa™ b(™), ... are presented for equal time intervals. Each

mappings from input vectors, representing features such ART, input is complement coded, with < a; < 1, af
patient history and test results, to output vectors, representing a;, andI = A

(a,a%), so that|A| = M. The outputb
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is normalized tol(zfzjL br, = 1), corresponding to a category Input—d; = az(l) f1<i<M

probability distribution. During testing, search may occur, if ’ 1-— a§1> if M+1<i<2M

the baseline vigilance paramete) is pos_ltlv_e. Once a chpsen Output—b;, = bg) E—1. L

F5 nodeJ meets theART,, matching criterion, the predicted 6) Reset: New STM steadv stat dF

outcome probability distribution is thé, — F2 weight ) Reset: New steady s aeE%t and i

vector (wyy ... wyy ... wyr), normalized to 1 afy. Choose a category—Lef be the index of the?; node
with maximal input7;, i.e.,

1) Variables:i =1...2M, j=1...N, k=1...L

STM activation LTM weights Ty =max{Ti...Tn}
zi—F} (matching) wi—F = I Number of committed nodes—If > C, increaseC' by
yj_FQ (COdIng) wjk—FQ — Fab 1 (C _ J)
Zk_Fab (map fleld) Fi activation—a:i =A; A wiy 1=1...2M
F) — F, signals 3 l;/l;ll\r/lc:hFl — F, signal is refractory on the time scale
S;—Phasic C—4#committed nodes
©,;—Tonic p—ART, vigilance ;=0
1,—Total 8) Reset or Prediction: Check tli¢ matching criterion
2M
2) Signal Rule: Define thé, — F, signal functionZ; = If Eﬁ% z; < pM, go to 6) Reset
9(5;,0;), where g(0,0) = 0 and $£ > & > 0 for If 2 i=1 @i 2 pM, Qo to 9) Prediction
S; > 0and®; > 0. 9) Prediction:
E.g., Fb activation—, = by Awye k=1...L
Ti=58;+(1-a)0; 10) Match tracking or resonance: Check th&® matching
T " 0 11 hoiceby-dif criterion
with o € (0, 1) (choice-by-difference) or If ST%_ 2 < pap» 9O to 11) Match tracking
T = Sj/(a+2M - ©;) If >5_; 21 > pas, 9O t0 12) Resonance
with o > 0 (Weber law) 11) Match tracking: Raise to the point of ART, reset

1 2M
ic si : 2M 4 . P = if2im Ti T €
The phasic signal componeft equalsy ;" A; A w;; and Go 10 6) Reset

2M 12) Resonance: New LTM weights on the time scale of

the tonic signal componert; equals)_;”; (1 — w;j).

3) Notation learning _ I
Minimum— a A b = min{a, b} Old weights—{* = w;y i =1...2M,
4) Parameters old

wyy =wgx k=1...L

Number of input componentséi—= 1...2M Decreasel, — I weights—w;; =

Number of coding nodess+—=1...N
Number of output componentsk—= 1...L 1 — B)old oldy ., _

. . - B +3AZ/\ 4 '—1...2M
Signal rule parameters—E.go € (0,1), (choice-by- (L= Aywiy’ + A A wit)
difference) orae > 0 (Weber law)

Learning rate—5 € [0, 1], with 8 = 1 for fast learning 1= D™ 1 8(be Awdd) k=1 L
Baseline vigilanc ART,)—p € [0, 1], with 5 = 0 for (ART/ )\;li]é]i’fa:c/e (rgcoxi)’;—)ﬂ =p
maximal code compression 13) N at iteration:

Map field vigilance—p., € [0,1], with po, = 1 for ) Next iteration:

maximal output separation Increasen by 1

Decreasel’, — % weights—w ), =

Match tracking—e, with |¢| small. New input—A; = {“5 ) ) fl<i< M
1—a; if M+1<i<2M
MT+: >0 Newoutput—bk:bén) k=1...L
MT—-: e<0 New F; activation—; = A; Aw;y 1=1...2M
F, order constants6-< &y < ... < ®; < ... < @1 < New I} — F; signal to committed nodes
g(M,0), with all &; = g(JM,0). Phasic—
5) First Iteration:n = 1 oM
Fi « I, weights—w;; = 1 ¢ = 1...2M, j = Si=Y Aihwy; j=1...C
1...N i=1
ab i L — g — _
fQ —L> e weights—w;, =1 j =1...N, k = Tonic—
Number of committed nodes&-= 0 2M
Signal to uncommitted nodesf-=®; j=1...N 0; = Z(l —wy;) j=1...C

ART, vigilance—p = p i=1
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For voting, ARTMAP generates a set of prediction vectors

ARTMAP: Testing e for each of the trained networks produced by several different
Wf h\ orderings of the training set inputs. The voting networks may
) 2 =Wy | average their output vectoksfor each inputa; or each voting
network may choose one output class, with the predicted class
5[ = B[ ¥ b ez, being the one that receives the most votes.
R i s 1) Test set input;
4 ! P fl<i<M
.. a; mls1s
i i, AR, ” nput— i = {1 —ai fM+1<i<2M
xw"’ 2) I, — F, signal:
F Phasic—
2M
S; IZAi/\wij 7=1...C
=1

A =(a,a°) Tonic—
: oM

@jIZ(l—wi]’) jzl...C

Fig. 5. During ARTMAP testing, an inpui activates the/th F» category i=1
node. The map field weights 7, then form a prediction vectoz, which Total
may be distributed. The network computes classification probabilities, with otal—

|b| = 1, at the output fieldF?. T _ 9(5;,0;) j=1...C (Signal rule)
T\ e j=C+1...N
3) F, category choice:
T, =9(5;,08;) j=1...C (2) Signal rule) Let J be the index of thef, node with maximal input

Go to (6) Reset 1;, ie.,

Total—

Ty =max{Ty...Tn}
B. Fuzzy ARTMAP Testing

During ARTMAP testing (Fig. 5),/1 < F5 categorization
weightsw;; and F, — Fb prediction weightsw;;, are fixed.
A test-set inputa chooses amART, category.J, possibly by ==
following search, ifg > 0. Map field activationz then D=t Wik
equals theF, — F° weight vector(wyy ... wyk ... wyL),
and the output vectob equals this vector normalized to 1.
With fast learning wherb represents single output classes A simplified remote sensing classification problem illus-
during training, only one weight ;i is positive and only one trates fuzzy ARTMAP dynamics and also serves as a prototype
component ob is positive, corresponding to prediction of thefor the remote sensing tests described in Section VIIl. The
single output clasé = K. If b is distributed during training prototype task is learning to identify one of three CALVEG
or if learning is slow,b may represent a probability vector,[40] vegetation classes (mixed conifer, coast live oak, south-
distributed across output classes. ern mixed chaparral) for sites at which two spectral values

ARTMAP fast learning typically leads to different adaptivLandsat TM 1 and 4) are known at each pixel. The prototype
weights and recognition categories for different orderings ofexample is based on a data set collected at the Cleveland
given training set, even when the overall predictive accurablational Forest. Larger scale tests on this data set (Section
of each such trained network is similar. The different categolll) predict 8 possible vegetation classes with inputs of up
structures cause the location of test set inputs where errty$s TM bands and 7 ancillary variables. In this more realistic
occur to vary as the training set input orderings vary. A votinggtting, fuzzy ARTMAP performance is compared with that
strategy uses several ARTMAP systems that are separat@lymaximum likelihood [41], [42], K Nearest Neighbor [43],
trained on one input set with different orderings. The finalnd back propagation [21], [22]. However, first reducing the
prediction for a given test set item is the one made by tmeimber of input dimensions to two (TM bands) and the
largest number of networks in a voting “committee.” Sincaumber of output classes to three (vegetation classes) will
the set of items making erroneous predictions varies from oakow visual illustration of fuzzy ARTMAP dynamics (Section
ordering to the next, voting serves both to cancel many Wwil).
the errors and to assign confidence estimates to competinghe data set for the prototype remote sensing problem
predictions. A committee of about five voters has provemports the vegetation class for each of 50 sites: 16 mixed
suitable in many examples, and the marginal benefits of votingnifer, 25 coast live oak, and nine southern mixed chaparral
are most apparent when the number of training samples[Table I(A)]. The sites vary in size, averaging about 90 pixels
limited. each. Landsat spectral bands TM1 and TM4 constitute the

4) Output prediction:

Wik k=1...L

VI. REMOTE SENSING PROTOTYPE EXAMPLE
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TABLE | )
PrOTOTYPE REMOTE SENSING TESTS :
A. Data set ;o o °
Class label # sites # pixels ogg §
mixed conifer 16 1336 R
coastlive oak 25 2752 %
southern mixed 9 348 = §§§ g g
chaparral R |e8z5isis
= EEEE
TOTAL 50 4436 geaoese
Sl £
B. Fuzzy ARTMAP Incremental Learning g ° 8%
Training set Categories Test set pixels Test set sites °°
(# pixels) (# F, nodes) (% correct) (# correct) i
100 8 85.9% 8/10
500 21 83.2% 9/10 R
2000 72 88.5% 10710
TM Band 1
3328 126 89.3% 10/10
C. Voting Fig. 6. Prototype remote sensing inputs. Each point shows the scaled Landsat
Input ordering Categories Test set pixels Test set sites spectral band components (TM1—blue) anda; (TM4—near infrared) of
(Figure 8) (# F, nodes) (% correct) (# correct) the ART, input vectora. Pointso are found in mixed conifer sites, points
+ are found in coast live oak sites, and points / are found in southern mixed
() 126 89.3% 10/10 chaparral sites. Data set values are taken from the Cleveland National Forest.
(b) 131 86.8% 9/10
() 139 86.8% 910 During testing, each test set pixel predicts a class, given
@ 153 89.4% 910 the spectral band input values; and a2 for that pixel.
S0 Performance accuracy is measured both in terms of the percent
© 133 84.8% of pixels that are correct and in terms of the fraction of sites
average 136 87.4% 910 that are correctly identified by a vote among pixels in the site.
voting -—- 91.0% 10/10

VIl. Fuzzy ARTMAP PROTOTYPE TESTS

_ ) _ ) The prototype remote sensing tests illustrate fuzzy
data set input for each pixel, with values scaled to the intervakTmap dynamics by showing how the network learns to

[0,1]. Before training, 10 sites, representative of the vegetatigfke correct vegetation class predictions. Fig. 6 indicates
class mix, are reserved as a test set. No pixels from these S##S the problem is difficult: of the 4436 pixels in the data
are used during training. The goal is to predict the correggt [Table I(A)], many share spectral band values within and
vegetation class label for each of the 10 test set sites.  petween the three vegetation classes, and the three classes
During training and testing, a given pixel corresponds t0 &fye not linearly separable. In fact the problem proved to be

ART, inputa = (a1, ag), wherea, is the value of TM1 and (o4 gifficult for an elementary back propagation network to
ay is the value of TM4 at that pixel. The correspondidT,  make accurate predictions (Section D).

input vectorb represents the CALVEG vegetation class of the During the initial learning phase, pixels are selected one

pixel's site at a time, at random, from the 40 training set sites. Fuzzy
(1,0,0) mixed conifer ARTMAP is tr.ained incrementa!ly, with each ™ band vector
b=1{(0,1,0) coast live oak (26) @ presented just once. Following a search, if necessary, the
(0,0,1) southern mixed chaparral network selects athRT,, category by activating a#y node

J for the input pixel, then learns to associate categbryith
During training, vectorb informs the ARTMAP network the ART, vegetation class of the site in which the pixel is
of the vegetation class to which the pixel's site belongfocated. With fast learning, the class prediction of eAdtil,
This supervised learning process allows adaptive weights dategory.J is permanent. If some inpatwith a different class
encode the correct association betweeandb. Tests below prediction later selects this category, match tracking will raise
examine the effect of training set size on predictive accuradyRT, vigilancep just enough to trigger a search for a different
[Table I(B)]. To generate a training set of a given size, pixelSRT, category. In all prototype tests; = 0 (conservative
are selected at random from the entire training set, whidimit—Section II-A), 5 = 1 (fast learning—Section llI-F), and
represents approximately 3600 pixels in 40 sites. Other tegts= 0 (maximal code compression). The map field vigilance
show how voting can improve predictive accuracy [Tablg,;, can have an arbitrary value between 0 and 1, since with
I(C)]. fast learning and binary predictions the map field registers
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Input 2 [Fig. 7(b)] also selects categosy= 1. At the start
‘ of each input presentation, theRT, vigilance p equals the
baseline vigilances, which here equald. Thereforea meets

;; ! | E ol | theARTa mat_ching criteriqn (Seption lI-E), S0 categoufy;
3 1 g ; 1 remains active and predicts, via the map field, that this new
z = | input is also from a mixed conifer site. Since this prediction

is correct, fieldF*® registers a perfect matdfiz| = 1) and
so meets the map field matching criterion. During learning the
category boxR; expands to include input point 2.
TM Band 1 TM Band 1 Input 3, from a coast live oak sité+), requires match
(a) (b) tracking and search to learn the correct prediction, as follows
[Fig. 7(c)]. This inputa first selects category = 1. Again,
sincep = p = 0, ART, accepts the new input into this
a | o : category long enough to predict mixed conifer. However, the
i1 | i network now detects a predictive error, since the incorrect
prediction sends the activity, of all map field nodes to 0.
1 Match tracking increasesjust enough to reseART,, where
| a new nodeJ = 2 becomes active. Since uncommitted nodes
‘ 3 meet the matching criterion for ary; nodeJ = 2 remains
| } active, establishing the point bak,, which henceforth will
TM Rand 1 TM Band 1 predict coast live oakKK = 2).
Input 4, again from a mixed conifefo) site, shows how
© @ match tracking can create more than one box for each class.
,,,,, I This feature allows ARTMAP to learn a set of decision rules
of arbitrary complexity while minimizing predictive error. For
¢ ° example, concentric rings in an input space could be mapped
| ! to alternating category predictions. At the same time, sefting
[ ' equal to 0 allows the network to maximize code compression,
. T creating a new category only in response to a predictive error.
3 3 Design principles that balance the two goals—minimum er-
ror, maximum compression—allow ARTMAP to learn correct
I , predictions for a small category of rare cases embedded in
TM Band 1 TM Band 1 a large category of common cases. Input 4 [Fig. 7(d)] first
@ o) selects thef, point category = 2, which maximizes the
Fig. 7. Prototype remote sensing example: Fuzzy ARTMAP increment(e:tmIce funCtIOI"ﬂ} (2). _Smce thls'category pl’.edICtS coast live
learning in response to the first six training set points. Inputs 1(a), 2(b), aA@K, the map field registers a mismatch, which sends a match
4(d) are from mixed conifer sites (0) and inputs 3(c), 5(e), and 6(f) are frotnacking signal tAART,. This raises until it is just above the
ior?;t live oak S|te_$+). After learning, inputs 1 gnq 2 have established the, ~+apy rati0|A./\WJ||A.|_l (Section V), whereA = (a, a®) is
. « category/ = 1, which maps to mixed conifer; inputs 3, 5, and 6 have . .
established category = 2, which maps to coast live oak; and input 4 hadh€ complement coded input t (Section llI-A). The next
established the point categafy= 3, which maps to mixed conifer. Southern category] that will be able to resonate, and so remain active
mixed chaparral, with sites that ir)clud_e _Iess than 3% of the pixels, happerlst]'i]g enough to make a class prediction, must now meet the
not to be represented among the first six inputs, which were selected at random, . L X X
stricter matching criterion imposed by the new, highdtT,
vigilance p. Geometrically (Section IV), once nodé = 2
either a perfect matciz| = 1) or a complete mismatch |eads to match tracking, a new active categbmyill now meet
(Iz| = 0). the ART, matching criterion only if the expanded b& ¢ a
would besmallerthan R, & a, wherea is the current input.
After match tracking, input 4 next selects categofy= 1
(which actually would have made the correct prediction), but
Fig. 7 illustrates fuzzy ARTMAP learning in response tdhis category fails to meet th&RT, matching criterion, since
the first six training set inputs, selected at random from tlike box R; ¢ a would have been larger thaR; ¢ a. The
40 training set sites. Input 1 [Fig. 7(a)] represents a pix&lput therefore also resets node = 1. then activates the
that has a low TM1 valuéa;) and a high TM4 valu€a,;) uncommitted node/ = 3, which learns to predict mixed
and that is found at a mixed conifer sie). Input a selects conifer (K = 1).
the uncommitted?,; node J = 1 (Section 1lI-B). During Input 5 [Fig. 7(e)] selects category node = 2, which
learning, all weightsu ;. from this node to the map fielé'*®  correctly predicts coast live oak+), so no match tracking
(Fig. 2) decay to O except for the weight;; to the nodeX’ or ART, search is invoked. During learning, as the weight
representing the correct vegetation cldss = 1). Category vector w, adapts according to (11), the bd¥% expands to
J = 1 appears as the point bag;. Ry @ a, wherea represents the TM values of input 5. Since

o

ot
TM Band 4

TM Band 4

(7]}

TM Band 4
TM Band 4

A. Incremental Learning by the First Six Inputs
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p = p =0, the size ofR, & a is unrestricted. Finally, input 6 two different orders during training. The two networks might
[Fig. 7(f)] selects and further expands bfx. Weights remain then each correctly predict 90% of the test set inputs, despite
unchanged during learning only i is inside a selected box the fact that the two have significantly different internal input
that has already learned to make the correct prediction. §euping rules, or category boxes, ART,. In particular,
training proceeds, category boxes cover more of the inphe test set inputs that the first network identifies correctly
space, so the case where weights remain unchanged dudng typically different from those that the second network
learning occurs increasingly often. If a finite input set igentifies correctly, despite the fact that both were trained
presented repeatedly, all training set inputs learn to predart the same input set with the same network parameters.
with 100% accuracy, provided that the set of input predictiodsRTMAP voting uses this order dependence to advantage
is consistent, i.e., that no two identical inpuismake the to improve and stabilize overall predictive performance, as

same vegetation class prediction. follows.
Fig. 8(a)—(e) illustrates the decision regions of the prototype
B. Predictions of the Trained ARTMAP Network remote sensing example after presentation of all 3328 training

. . set inputs (Table 1-C). A decision region plot shows predic-
As incremental learning proceeds, fuzzy ARTMAP creatgs < Al T™M band inputsa would make if presented to the

a set of overlapping category boxAs, each predicting one of trained network. In Fig. 6, data set points from mixed conifer

the three vegetation classes. By the time 100 training set pixgl.o - o represented by a cir¢t, points from coast live oak

inputs have been selected at random from the 40 training fks b ; ;
. . : y a plug+), and points from southern mixed chaparral
sites, fuzzy ARTMAP has created eight categories [Table I(Bﬁites by a slajl(l/)). The same marks indicate vegetation class

Three of these categories predict mixed conifer, four pred Fedictions made by a network in response to spectral value

coast live oak, and one predicts southern mixed chapar ifiputs across the unit square. The rough decision boundaries

Th_e .10 test set_ sites cqntaln a total of 1108 pixels. Aft(?éflect the ambiguous predictions in the corresponding portion
training on the first 100 inputs, network performance at thlﬁ the data set

stage O.f learning was fir_st measured by the.number of correchg_ 8(a)—(e) and Table I(C) show how network predictions

vegetation class predlctloqs the test set pixels were ablectz?n vary as a function of input order. Each of these five tests
make. For e?‘Ch test set plxel_, the T™ banq ve@tcxel_ects_ uses the same training set, presented in different, randomly
one of the eight AR categories, then predicts that its SIt%hosen, orders. Decision boundaries vary, as do the number

belongs _to_ the vegetation cl_ass assc_)ciated with that categ%rfyARTa categories (from 126 to 153), the number of correct
After training on just 100 input points, 85.9% of the tes{est set pixels (from 84.8% to 89.4%), and the number of
set pixels correctly predicted the vegetation classes of th ;

. ) rrect test set site identifications (from 8/10 to 10/10). Before
sites. A second performance measure examined the numbeg

test set sites that Id b tlv classified. Thi " wing the test set answers, it would be difficult to decide
est Set siies that would be correctly classilied. 1his me ich of these five networks would be the most accurate on
counts the number of pixels in each site that predict ea

fidvel data. ARTMAP voting chooses for each pixel the class

vggetatlon qlass, then selec_ts the glass chosen b)é the nﬂ) EHiction chosen by the largest number of the five “voting
p'X.el.S' At th|§ stage .Of learning, having psed only .3/0 of thgommittee” networks. The size of each vote also provides a
training set tIID'X.edIS’ fflgzt (I)f tf;}e 10 tesi S'tf vegetatl;[:on clqs @asure of confidence in each decision. Confidence is typically
were correctly identied. in this case, too 1ew SOUthern MiXqf ot near decision boundaries. Fig. 8(f) indicates how voting
chaparral lex.emplars hat_j been presented for that class to eac%\X smooth and stabilize decision boundaries. In addition,
win a majority at any site. ixel-level performance on the voting network (91.0%) is

As the qumber of trammg set inputs mcreaseq, the pix etter than that of any individual trained network, and site-
level predictive accuracy increased only marginally, evgp, prediction is perfect (10/10)
decreasing transiently as the number of training set inputs '

increased from 100 to 500 [Table I(B)]. After presentation

of all 3328 training set pixels, 89.3% of the test set pixel§ Back Propagation Tests
correctly predict the vegetation class of their site. However,
site-level prediction improves steadily to 9/10 test set sitﬁs,
after training on 500 inputs; and 10/10 sites, after training
2000 inputs or on the full training set. This result highlight
the observation that the pixel is often too small and noisyaap
unit to make an accurate prediction. However, a group of noi
pixel-level results can be pooled to form accurate mappin
across functional regions or sites.

An elementary back propagation neural network did not per-
rm well on the prototype remote sensing problem. Networks
were trained using a variety of parameters, initial conditions,
d numbers of hidden units. In all cases, back propagation
s unable to make correct predictions for the southern mixed
aparral sites. The most successful network used 10 hidden
gnits, a learning rate of 0.3, and a momentum rate of 0.4.
After presentation of the full training set, this system correctly
. identified the vegetation class of just 75% of the test set
C. Voting pixels. Site-level prediction was correct for the seven mixed
A typical characteristic of fast learning is dependence abnifer and coast live oak training set sites. However, all
category structure upon the order of training set input préiree southern mixed chaparral sites were wrongly identified,
sentation. For example, suppose that two fuzzy ARTMAEvidently because these “rare cases” were averaged away
networks learn from a common input set that is presentedamong the more common exemplars. On the other hand,
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TABLE I
REMOTE SENSING DATA SET

: CALVEG # sites  # pixels
§ class
==}
E mixed conifer 16 1336
canyon live oak 11 814
coast live oak 25 2752
chamise 21 1042
(@) (b) scrub oak 20 1315
red shanks 11 1450
southern mixed chaparral 9 348
northern mixed chaparral 50 2398
TOTAL: 8 classes 163 sites 11,455 pixels

TM Band 4
TM Band 4

| i

//////////// the fact that fuzzy ARTMAP and maximum likelihood tend to

TM Band 1 TM Band 1 make errors under somewhat different circumstances.
(© (d)

A. Cleveland National Forest Test Stand Data

The test stands from the Cleveland National Forest identify
the CALVEG vegetation class for 209 sites. The full data
set represents 17 vegetation classes. The primary goal of this
study was to develop and compare automated classification
methods for large-scale remote sensing applications. In order
to focus on the methods, the selected prediction problem could
not be too easy, but neither could it be dominated by noise
or chance. The test data set examined here thus excludes
TM Band 1 TM Band 1 vegetation classes represented by only a few sites, leaving

© 0 eight vegetation classes and 163 sites (Table II). The prediction

. . _ roblem remains challenging and realistic: the pixel-based
Fig. 8. Prototype remote sensing example: Fuzzy ARTMAP voting. (a)—(

Fuzzy ARTMAP networks trained on a common set of 3328 inputs presented® X 25 m) remotely Senseq qata are pr|cally noisy and
in five different, random orders show variations in decision region geometynreliable; the number of training set sites (143) is small

Points marked by a circleo) predict mixed conifer, points marked by a plusyelative to the number of classes (eight); some of the vegetation
(+) predict coast live oak, and points marked by a slgshpredict southern

mixed chaparral. Pixel-level predictive accuracy ranges from (e) 84.8% to @l)asses_' SUCh as the three different types of Qak! are Iike|Y_t0
89.4% while site-level predictive accuracy ranges from (e) 8/10 to (a) [Tabigave similar features; and the actual vegetation at each site,

I(C)] 10/10. (f) Voting across the five trained networks boosts pixel-levgyhere sites range in size from 9 to 610 pixels (5625-381 250
accuracy to 91.0% and site-level accuracy to 10/10. Blank spaces indicate

2-2-1 tie among the voters. mé), is, in all likelihood, not a pure sample of just one class.

TM Band 4

L L . . B. Input Variabl mbination
sophisticated variations of the back propagation algorithm that put Variable Combinations

have recent|y been deve'oped m|ght improve performance_ For each piXel, the Cleveland Forest data set prOVideS SiX
Landsat Thematic Mapper (TM) band values, three linear com-

binations of the TM band values, and four terrain variables.
The three linear combinations of TM1-5&7 reflect brightness
(B), greenness (G), and wetness (W) [44]. The four terrain
Tests in this section show how fuzzy ARTMAP perforvariables—slope (SL), aspect (A), shade (SH), and elevation
mance on the Cleveland Forest data set compares to tfigt—were derived from digital elevation models, warped to
of standard maximum likelihood methods [42]. Voting im{it the Landsat image [16], [20], [45].
proves ARTMAP predictive success, and both systems benefilTests in this section focus primarily on fuzzy ARTMAP
from appropriate selection of input variables and predictivend maximum likelihood performance on data sets for which
confidence thresholds. Best results are obtained by a hyhngut a provides only the six TM values (combo 1) and
system based on a convex combination of fuzzy ARTMAP armh data sets for whicha provides all 13 input variables
maximum likelihood predictions. As in the ARTMAP voting(combo 2) (Table Ill). On tests that use each of these input
process (Section VII-C), hybrid prediction takes advantage wériable combinations, basic fuzzy ARTMAP and maximum

VIIl. REMOTE SENSING TESTS
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TABLE Il performance from 44.7% to 51.9% when linear transforms
TEST REsuLTs are combined with the original spectral band inputs (combo
6). This result is in direct contrast with statistically-based
A. Basic maximum likelihood and fuzzy ARTMAP classifiers. It also emphasizes the importance of selection of
Combo  Input % Correct % Correct + input features and suggests that performance might be further
variables maximum (# F, nodes)
likelihood  fuzzy ARTMAP enhanced by other unknown transforms. On the other hand,
1 TMI-5&7 46 44.7 (1203 cats) ancillary variables have similar effects on maximum likelihood
2 TM1-5&7 54 57.2 (208 cats) and fUZZy ARTMAP performance.
ISS’LGA"&I . The first tests described here use a basic fuzzy ARTMAP
T network to predict the eight vegetation classes. Test procedures
3 BGW 40 48.1 (1145 cats) are like those of the prototype problem (Section VII-B), except
4 TMI-5&7 54 47.2 (365 cats) that the prototype used only two spectral band values to predict
SL. A SH. B three of the vegetation classes. As in the prototype tests,
5 3411;5857 54 48.5 (392 cats) baseline vi_gil_ancqz) = 0 (maximal com_pression)y =~ (_con-
o servative limit), and3 = 1 (fast learning), and there is only
6 EMGlfzgﬂ 46 51.9 (595 cats) one voter. Learning is incremental, with each input presented
o once. During testing, classification accuracy is measured by
7 S’L,GA,VEH,E 52 56.6 (259 cats) site, with a site’s vegetation class predicted to be the one

chosen by the largest number of pixels. For sites at which

B. K Nearest Neighbor (KNN) ties occur, the number of correct classifications is counted at

Combo # Inputs K=1 K=5 K=10 .. .
L TM1.5&7 14.4% 47.0% 14.0% chance. In ea_ch test, th_e tramlng _set data represent 143 sites,
with the remaining 20 sites providing the test set. In order to
2 TMI-5&7 56.0% 54.0% 56.0% . . . . . .
B.G. W check for sampling bias in the test set selection, five different
SL, A, SH, E tests sets, each with 20 sites, were compared across multiple
tests, with fuzzy ARTMAP and maximum likelihood using the
C-C COh“fi‘:er(‘;e thfe;‘lw‘)ds and site-level voting same training and test sets. In addition, fuzzy ARTMAP was
ombo variables . . . . . .
Maximum likelihood Fuzzy ARTMAP run with 35 different orderings of each training set, since input
CT=  CT=216 p=0 p=0.87 p=087.5voters  Order could affect results by 1-2%.
46.0% 48.8% 44.7% 46.4% 48.6%
Combo 2 (13 variables) . .
Maximum Likelihood Fuzzy ARTMAP C. K Nearest Neighbor and Back Propagation Tests
CT=-00 CT=10.0 p=0 p=0, 5 voters . .
54.0% $6.5% 5790 60.0% The K Nearest Neighbor (KNN) algorithm [43] was also

tested on the six variable and 13 variable input sets [Table
I(B)]. Predictive accuracy was similar to that of fuzzy
ARTMAP and maximum likelihood, varying somewhat with
likelihood [Table III(A)] have similar predictive accuraciesthe number of neighbors (K) chosen during testing. However,
approximately 45-46% with the six TM input variables an&KNN needs to store all training set pixel vectors (approxi-
54-57% with all 13 variables. On data sets that provideately 10000), while fuzzy ARTMAP compresses memory
various subsets of the 13 input variables, performance of thg a factor of 8 for combo 1, creating about 126(RT,
two systems can differ significantly. For example, when pixelategories during learning. Remarkably, using all 13 input
inputs provide only the three linear combinations B, G, Wariables, the average number ART, categories drops to
(combo 3), maximum likelihood performance drops to 40908, giving a compression ratio of 48:1 compared to KNN.
while fuzzy ARTMAP performance increases to 48%. Although the back propagation neural network has been
The patterns in the results of maximum likelihood classifapplied successfully to remote sensing classification problems
cation as a function of inputs are consistent with past exp@.g., [46]), performance of an elementary back propagation
rience in remote sensing. Raw spectral bands have frequesigtem was not satisfactory on the present remote sensing
produced better results than transforms such as brightnggeblem. On combo 1, with TM1-5&7 as inputs, correct
greenness, and wetness. Similarly, combining the lineagyediction rates ranged from 22% to 46% as the number of
transformed variables brightness, greenness, and wetness Witlden units ranged from 15 to 60. The best test set prediction
the original spectral bands yields no improvement (combo &ate, obtained using 30 hidden units, was comparable to the
The results of fuzzy ARTMAP classification are strikinglyaverage performance rates of maximum likelihood, KNN,
different, with the brightness, greenness, and wetness traasd fuzzy ARTMAP. For this test, back propagation had
forms resulting in better performance than the original spectial learning rate of 0.3 and momentum equal to 0.4, and
bands (combo 3). Even more divergent from maximum likeleach case was repeated 5 times, varying the set of initial
hood is the improved performance when fuzzy ARTMAP usasgeights. On the 13-variable input set (combo 2), the best
both the six spectral bands and the three linear transformsbaick propagation performance was worse than the average
the spectral band variables. In fact, one of the most interestipgrformance of ARTMAP, maximum likelihood, and KNN:
results of these tests is the increase in fuzzy ARTMARith 50 hidden units, a learning rate of 0.6, and momentum
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equal to 0.4, performance accuracy reached a maximumfofmance somewhat when training produced many categories,
47.1% at the pixel level and 50% at the site level. Evess in the six variable tests (combo 1), which average 1203
with over 100000 input presentations and 212 min of CPthtegories [Table 11I(C)]. As the threshold increases, at some
time on a Sun 4 Sparc Station, weights did not convergeint performance tends to increase for a short interval, then
during training. At lower learning rates, with CPU timesdrop steeply, when the threshold is set so high that many useful
exceeding 1000 min, back propagation’s predictive accurapyedictions are discarded. With both combo 1 and combo 2,
was less than 27%. In general, back propagation requires slmaximum likelihood performance shows a similar trend as the
learning and many presentations of each input, while fuzepnfidence threshold increases. In contrast, on the 13-variable
ARTMAP learning is fast and incremental, or “on-line.” Ininput set (combo 2), where fuzzy ARTMAP produces only
addition, choosing the number of hidden units and optimizirZp8 categories, setting= 0 gives optimal performance, and
the architecture typically require extensive simulation studigzerformance begins to drop significantly far> 0.5.
Fuzzy ARTMAP is thus particularly well suited to ongoing
training in situations where new information continues to ar-
rive during use. Again, however, sophisticated application offa Site-Level Voting
back propagation variant may have shown better performanceTable | indicates how ARTMAP voting, where voters decide
on a prediction for each pixel, can boost performance by 3—4%
o . o on the prototype example. For mapping problems, however,
D. Rejecting Low-Confidence Predictions a site or region fixes a more appropriate measurement scale
In the tests described in Section B, basic fuzzy ARTMAFhan individual pixels. On the large-scale remote sensing tests
and maximum likelihood systems make a vegetation claissthis section, voting at the site level, rather than the pixel
prediction for each pixel input, even if there is no good matdgvel, proved to be the more successful method. For site-level
between an input and any learned class. Performance accune@yng, a number of fuzzy ARTMAP networks are trained on
of both classifiers can be boosted by adding a confidenggiven input set, each with the inputs presented in a different
threshold. Then, when confidence in a prediction is low, tli@ndomly chosen order. Each voter then predicts the vegetation
corresponding test set pixel is labeled “inconclusive” and doekss of each test set site, as in Section B. Finally, then, the
not participate in the site-level vegetation class decision. class prediction for each site is taken to be the one made by
For fuzzy ARTMAP the matching criterion imposed by théhe largest number of voters.
baseline vigilances provides a natural confidence threshold Site-level voting improves fuzzy ARTMAP performance on
(Section V). During training, some category boxs may a variety of six variable (combo 1) tests, provided that low-
grow large, sinces is set equal t@ in order to maximize code confidence predictions are ruled inconclusive [Table [1I(C)].
compression. During testingy remains equal tg. Setting Settingp = 0.87 increases individual network performance
p > 0 imposes a minimum matching criterion before &#om 44.7% to 46.4%, and voting further increases perfor-
chosen category is allowed to remain active and make anance to 48.6%. Whep is larger than 0.9 the confidence
prediction. Geometrically, a prediction requires that the size tfreshold is too high. Fop = 0.92, individual test set
the expanded boR ; ¢ a would be no greater thafi — p)M  performance falls to 42%, then to 29% far= 0.95. Notably,
(25), wherelM is the number of input variables. In particularyoting performance remains at 50% even foe 0.92, where
if Ry is already larger than thefl — 5)M any pixel that individual network performance drops to 42%. Evidently,
first chooses category during testing will be regarded aswhen 5 becomes too large for an individual network, which
inconclusive. Maximum likelihood computes a discriminarivould then label too many pixels as inconclusive, a number
function value (DFV) for each vegetation class, given a pixéf voters can pool predictions to maintain accuracy. Thus,
input. A confidence threshold (CT) checks that the maximehoosing an appropriate confidence threshwldnd using a
DFV of a pixel is greater than CT before that pixel mayoting strategy appear to be mutually beneficial.
participate in a site-level prediction. On 13 variable tests (combo 2) with = 0, 5, voters
Choosing an optimal confidence threshold for a given tésaprove fuzzy ARTMAP performance to 60.0%, compared to
set would require prior knowledge of the test set inputén individual network average of 57.2%. Adding more voters
However, a useful range of (fuzzy ARTMAP) or CT usually had little effect on results. Since maximum likelihood
(maximum likelihood) values can be estimated by reservingcamputes order-independent parameters, this technique has no
randomly chosen portion of the training set as a “verificatioanalogue of ARTMAP voting. Site-level voting thus widens
set.” Before training on these inputs, tests would estimateth® accuracy gap between maximum likelihood (56.5%) and
predictive confidence threshold that gives good performanitzzy ARTMAP (60.0%).
on this subset. During testing, then, the threshold would be
fixed at the selected value. The verification set procedure was . .
used to obtairy values. The same method could have bedn HYPrid Fuzzy ARTMAP—Maximum
used to select maximum likelihood CT values. However, tHekelihood Classification System
CT was here chosen simply to optimize maximum likelihood The system variation with the best performance combines
test set performance. the predictions of trained fuzzy ARTMAP and maximum
Fuzzy ARTMAP results were found to be fairly constanlikelihood systems. The success of this method is due to the
across widey intervals. Moderate threshold levels boosted peobservation that the two classifiers tend to make predictive
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TABLE IV
CONFUSION MATRICES: SIX VARIABLE TESTS

A. Fuzzy ARTMAP (p=0.87, 5 voters) - 48.6% correct (diagonal)

Predicted Actual vegetation classes

vegetation mixed  canyon coast  chamise  scrub red s. mixed n. mixed Total
class conifer  liveoak  live oak oak shanks chaparral chaparral

mixed conifer 11.0 5.0 16.0
canyon live oak 1.8 0.2 0.1 0.3 2.4
coast live oak 11.9 0.1 2.7 1.7 6.8 23.2
chamise 6.8 1.7 2.2 10.7
scrub oak 0.2 0.6 4.4 2.7 0.1 43 12.3
red shanks 0.3 3.6 2.2 1.0 1.8 8.9
s. mixed chaparral 2.8 0.9 3.7
n. mixed chaparral 3.6 5.5 1.2 3.4 1.4 7.7 22.8
Total 11 7 16 13 12 10 7 24 100
B. Maximum likelihood (CT = -21.6) - 48.8% correct (diagonal)

Predicted Actual vegetation classes

vegetation mixed  canyon coast  chamise  scrub red s. mixed n. mixed Total
class conifer  live oak  live oak oak shanks  chaparral chaparral

mixed conifer 11.0 5.0 16.0
canyon live oak 2.0 2.0 1.0 1.0 1.0 7.0
coast live oak 6.5 1.0 1.0 2.0 10.5
chamise 9.0 4.4 13.4
scrub oak 3.0 1.0 5.0 2.0 7.0 18.0
red shanks 35 5.0 6.0 5.3 19.8
s. mixed chaparral 1.0 7.0 2.0 10.0
n. mixed chaparral 1.0 1.0 1.0 2.3 53
Total 11 7 16 13 12 10 7 24 100
C. Convex combination (y = 0.6) - 50.6% correct (diagonal)

Predicted Actual vegetation classes

vegetation mixed  canyon coast  chamise  scrub red s. mixed n. mixed Total
class conifer  liveoak  live oak oak shanks chaparral chaparral

mixed conifer 11.0 5.0 16.0
canyon live oak 2.0 2.0 09 1.0 59
coast live oak 7.5 1.3 1.3 2.6 12.7
chamise 7.0 0.2 4.1 11.3
scrub oak 2.6 1.9 6.1 2.0 6.5 19.1
red shanks 2.4 3.7 6.0 0.1 3.5 15.7
s. mixed chaparral 1.0 6.6 1.9 9.5
n. mixed chaparral 1.5 3.1 0.7 0.1 4.4 9.8
Total 11 7 16 13 12 10 7 24 100

errors in somewhat different circumstances. Confusion matclassifiers do well on mixed conifer sites, but both do poorly
ces (Tables IV and V) compare fuzzy ARTMAP and maximuron canyon live oak and northern mixed chaparral. An ideal
likelihood predictions with test set ground truth classificationbybrid system would choose the right decision when the two
For example, in combo 1 tests (six variables), fuzzy ARTMARisagree, but designing such an optimal combination for a
[Table 1V(A)] makes more errors trying to identify red shankgiven problem would again requira priori knowledge of

sites than does maximum likelihood [Table IV(B)]. Boththe test set. Of a variety of hybrid algorithms tested, all
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TABLE V
CONFUSION MATRICES: 13 VARIABLE TESTS

A. Fuzzy ARTMAP (p=0.0, S voters) - 60.0% correct (diagonal)

Predicted Actual vegetation classes

vegetation mixed  canyon coast  chamise  scrub red s. mixed n. mixed Total
class conifer  liveoak  live oak oak shanks chaparral chaparral

mixed conifer 11.0 3.0 14.0
canyon live oak 3.0 1.0 4.0
coast live oak 9.1 1.7 0.2 2.7 13.7
chamise 5.4 2.0 1.3 8.7
scrub oak 1.0 0.6 4.9 2.0 0.9 2.5 11.9
red shanks 2.0 1.9 7.0 109
s. mixed chaparral 0.5 2.1 2.6
n. mixed chaparral 43 7.1 2.5 1.0 1.8 17.5 342
Total 11 7 16 13 12 10 7 24 100

B. Maximum likelihood (CT = 10.0) - 56.5% correct (diagonal)

Predicted Actual vegetation classes

vegetation mixed  canyon coast  chamise  scrub red s. mixed n. mixed Total
class conifer  live oak  live oak oak shanks  chaparral chaparral

mixed conifer 11.0 3.0 16.0
canyon live oak 4.0 1.0 1.0 7.0
coast live oak 11.0 4.5 4.0 10.5
chamise 9.0 2.0 13.4
scrub oak 3.0 3.5 3.0 8.0 18.0
red shanks 3.0 4.0 1.0 19.8
s. mixed chaparral 1.0 7.0 1.0 10.0
n. mixed chaparral 2.0 3.0 3.0 7.0 5.3
Total 11 7 16 13 12 10 7 24 100
C. Convex combination (y = 0.6) - 61.1% correct (diagonal)

Predicted Actual vegetation classes

vegetation mixed  canyon coast  chamise  scrub red s. mixed n. mixed Total
class conifer  liveoak live oak oak shanks chaparral chaparral

mixed conifer 11.0 3.0 14.0
canyon live oak 3.0 1.0 1.0 5.0
coast live oak 11.2 34 3.0 17.6
chamise 6.8 0.1 1.1 8.0
scrub oak 1.0 0.3 4.1 2.0 0.7 5.2 13.3
red shanks 2.0 3.0 7.0 12.0
s. mixed chaparral 0.6 4.4 0.1 5.1
n. mixed chaparral 2.5 5.6 0.5 1.0 1.8 13.6 25.0
_Total 11 7 16 13 12 10 7 24 100

showed some improvement over that of the individual systensite. Those pixels for which a definitive prediction is made
The hybrid that consistently gave best results took a convé»e., not an “inconclusive” response) can form a vector with
combination of the two systems’ site-level predictions, asomponents equal to the fraction of definitive pixels in that
follows. site assigned to each of the eight classes. An analogous
To select from the eight vegetation classes, maximum likprediction vector for fuzzy ARTMAP lists the fraction of
lihood generates a prediction for each of the pixels in \@ters choosing each class. A convex combination of the two
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vectors, giving weighty to fuzzy ARTMAP and(1 — v) to
maximum likelihood, forms the hybrid prediction vector.
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combo 1, fuzzy ARTMAP with five voters ang = 0.87
gave 48.6% correct predictions, while maximum likelihood
with CT —21.6 was 48.8% correct [Table 1lI(C)]. A
convex-combination hybrid withy = 0.6, which gives 60%
weight to fuzzy ARTMAP, improved test set performance to
50.6%. Withy = 0.4, which gives 60% weight to maximum [2]
likelihood, performance was almost as high (50.4%). With
~ 0.6, the hybrid system allows maximum likelihood
predictions of red shanks and southern mixed chaparral sites
to dominate the distributed (and largely incorrect) fuzzyt®!
ARTMAP predictions for these classes [Table IV(C)]. For
coast live oak sites and northern mixed chaparral, fuzzy

(1]

ARTMAP compensates for a number of the maximumt
likelihood errors. At canyon live oak sites, where the two
systems make the same errors, hybrid prediction is no better.
For combo 2, fuzzy ARTMAP with five voters ang= 0.0 51
gave 60.0% correct predictions, while maximum likelihood
with CT = 10.0 was 56.5% correct (Table 1lI-C). Since [6]
optimal performance of the two systems now differs by
3.5%, some hybrids do not give better predictions than fuzzyr
ARTMAP alone. Nevertheless, a convex combination with
v = 0.6 again gave the best performance, boosting accuracy g
61.1%. However, giving 60% weight to maximum likelihood
(v 0.4) brought performance back down to the level
of maximum likelihood alone. On combo 2, with all 13
input variables, fuzzy ARTMAP performance on the difficult
northern mixed chaparral class is greatly improved [Tab[éo]
V(A)]. Maximum likelihood shows less improvement [Table
V(B)], and predictions of the convex combination fall between
the two [Table V(C)]. 11

El

[12]
IX. CONCLUSION

This paper provides an introduction to the fuzzy ARTMAP
neural network in the context of remote sensing classificatit)
problems. Tests on a prototype remote sensing problem and
an actual vegetation mapping problem illustrate a number Bf1
points. First, a voting strategy improves prediction by training
several fuzzy ARTMAP networks on different orderings of
an input set. This strategy assigns confidence estimates!d
competing predictions. Second, fuzzy ARTMAP and maxi-
mum likelihood perform differently for different combinations
of input variables. Fuzzy ARTMAP performance increases®
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